Ga based data fusion approach in an intelligent integrated gps/ins system
نویسندگان
چکیده
A new concept regarding to the GPS/INS integration, based on artificial intelligence here is presented. Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, an INS/GPS integration method using a hybridadaptive network based fuzzy inference system (ANFIS) has been proposed in literature. During the availability of GPS signal, the ANFIS is trained to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. As ANFIS will be employed in real time applications, the change in the system parameters (e.g., the number of membership functions, the step size, and step increase and decrease rates) to achieve the minimum training error during each time period is automated. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS Integration in comparison with conventional ANFIS specially in the cases when facing satellites’ outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.
منابع مشابه
Performance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method
Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...
متن کاملA Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملOptimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کامل